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Abstract 

This project implements two standard algorithms for reducing additive white noise in the 

processing of speech signals. These are known as “spectral subtraction” and “iterative Wiener 

filtering”. The performance of the algorithms is evaluated and compared using TIMIT, a 

database of phonetically rich sentences, widely used in the industry in the development of speech 

processing algorithms. Objective measures are used to evaluate the quality of processed speech. 

 

 



Background 

The need to enhance speech signals arises in many situations. Most commonly the signal 

originates from a noisy environment, or is degraded by noise over a communication channel. 

Speech enhancement algorithms can be used to enhance both quality and intelligibility of speech 

signals, thus making communication more effective and reducing listener fatigue. The precise 

goals of speech enhancement algorithms depend on the specific application, and the specific type 

of noise involved, as well as its statistical relation to the clean signal. The main challenge in 

designing effective speech enhancement algorithms is reducing noise without introducing 

perceptible distortion to the speech signal. 

This project focuses on the reduction of additive white Gaussian noise which is uncorrelated with 

the clean speech signal. We are assuming that ����, the noisy signal, is composed of the clean 

speech signal ����, and the noise ����, i.e.  ���� � ���� � ����. 
 

Analysis and Synthesis 

Since speech signals are highly non stationary, the enhancement algorithms are applied one 

frame at a time. A short time Fourier transform (STFT) is used to analyze the signal, and once 

modifications have been made, the inverse transform is used to synthesize the enhanced signal. 

The STFT is defined as follows: 

	
��� � � �� � �����������
�
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Where x is the signal and w is the analysis window. To achieve perfect reconstruction we must 

be sure to sample the STFT at high enough rates in both time and frequency. From the definition 

above we see that 	
��� can be thought of as the output of a linear filter with impulse response 

w. Typically, w will have the properties of a low pass filter with bandwidth B. Thus the sequence 	
��� will have bandwidth B, so according to the sampling theorem it must be sampled at a rate 

of 2B to avoid aliasing. We will be using the Hamming window, given by 

��� � 0.54 � 0.46 cos !2# �$%  � � 0,1, … , $    �2� 

which can be shown to have bandwidth  ( � 2)/$, where ) is the sampling rate of the signal x 

and L is the length of the window. Thus 	
��� must be evaluated  2( � 4)/$ times per 

second, or every $/4 samples. Thus we can rewrite (1) as 
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where + � $/4 is the hop size in samples. As for frequency sampling, we first note that since 	
��� is periodic with period 2#, it is only necessary to sample over an interval of 2#. Next we 

note that by (1) we can think of the STFT as the Discrete Time Fourier Transform (DTFT) of the 

sequence �� � ������ for a fixed m. Since the window is time-limited with length L, 

according to the sampling theorem it suffices to sample 	
��� in frequency every 2#/$. Thus 

we may replace (3) by 
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In practice we evaluate 	
��� at N uniformly spaced frequencies around the unit circle, where N 

is the first power of 2 greater than L. 

To actually reconstruct the enhanced signal, we first note that for a band-limited window, and in 

particular for the Hamming window, we have 
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where 4 � 6�0�/+, and 6��� is the DTFT of w. Without loss of generality we may assume 4 � 1. This is known as the constant Overlap Add (OLA) constraint, and it allows us to obtain a 

simple scheme for perfect reconstruction, as follows. By (3) we have 
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where 	 is the DTFT of x. Thus, we may recover x by computing the inverse DTFT of this sum. 

However, as the discussion above shows, it suffices to use the sampled values in (4) and replace 

the inverse DTFT with the inverse DFT: 

���� �  17 � � 	
��-�
�


���
���/�

8�9

-�:
� � 17

�


���
� 	
��-����/�
8�9

-�:
� � �
����


���
     �7� 

where �
��� �  �� � ������. This result serves as the basis of the OLA method, which is 

used in the implementation . If we denote by <
 the frequency response of the filter applied to 

frame m, and use a fast Fourier transform (FFT) long enough to accommodate spectrum 

modifications, we may describe the input (x)-output(y) chain explicitly as follows: 
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In particular, if we apply no processing (<
 A 1) we get � � �. 
 

Spectral Subtraction 

We now describe the first algorithm implemented, spectral subtraction. We begin by estimating 

the noise spectrum. The first five frames of the noisy signal are assumed to be noise only. The 

noise power spectrum is averaged over these frames to obtain an estimate which is used for the 

rest of the algorithm. The heart of the algorithm consists of subtracting the estimate of the noise 

magnitude from the magnitude of the noisy signal spectrum, to recover (an estimate) of the 

magnitude of the clean signal spectrum. Due to fluctuations in the noise spectrum, this 

subtraction may result in negative values, in which case the most basic approach is to set these 

values to zero. The magnitude estimate is then combined with the noisy phase, an approximation 

(of the clean phase) which has been shown to be good enough for practical purposes. 

Symbolically, the algorithm is described as follows: 

 

 ���� � ���� � ����                          �1� B��� � 	��� � C���                       �2� B��� � |B���|�EF���                        �3� 
G	H���G � I|B���|J � GCK���GJL9J   �4� 	H��� �  G	H���G�EF���                       �5� �M��� � N�O�PQ� )RSPN�PT	H���U    �6� 

 

Here CK��� is the estimate of the magnitude of the noise spectrum at frequency �, computed in 

practice by averaging the magnitude of the fast Fourier transform of the noise signal at  

frequency � over the first five frames. 

There is freedom in choosing the exponent p above, and we experimented with various values in 

the range .1 – 5. The results are summarized below: 



 

These results suggest that as p increases, the filter becomes less aggressive, and thus less 

distortion is introduced.  Conversely, as p decreases to zero, the clean signal is progressively 

annihilated. Subjective evaluation (listening) suggests that values in the range .5 - 2 offer the best 

compromise between a desirable increase in SNR and an undesirable increase in distortion.  

To gain further insight into the algorithm, as well as access to objective quality measures 

described below, we may view the subtraction as a “filtering” process: 
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Using this view we see that the lower the SNR, the more the noisy magnitude is attenuated.   

The main challenge in spectral subtraction is dealing with the so called “musical noise” artifacts 

which result from the flooring of negative components. These artifacts were blatantly evident in 

our experiments. One approach is to use an over subtraction coefficient for the noise spectrum. 

We experimented with this approach (though only in a nonsystematic way), and the results were 

not convincing. 

 

Iterative Wiener Filtering 

We now describe the second algorithm implemented, iterative Wiener filtering. We begin once 

again with )()()( ndnxny += and we first look for a filter with impulse response h to obtain an 

estimate of the clean signal ∞<<∞−−= ∑
∞

−∞=

nknykhnx
k

 ,)()()(ˆ .  If we define the error by 

)(ˆ)()( nxnxne −=  and seek to minimize ^_�0���` we obtain, in frequency domain, the well-

known Wiener filter:   . 
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=  abb��� is the power spectrum of the noise, 

estimated in practice by using the square of the magnitude spectrum (i.e.  abb��� � GCK���G0, where 

CK��� was given under “Spectral Subtraction”). If we define the a priori SNR at frequency � by 
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=H .  From this it is clear that the filter is approximately 0 at 

low SNR and approximately 1 at high SNR.  

We can see above that the Wiener filter requires access to the power spectrum of the clean signal, which 

we do not have. This brings us to the iterative scheme, in which at each iteration we arrive at a new 

estimate of the filter and a corresponding estimate of the clean signal spectrum. The algorithm was first 

proposed by Lim and Oppenheim in [5]. The present approach relies on the assumption that the clean 

speech was generated by an all-pole model given in the z domain by 
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the gain of the system, >c-? are the all-pole coefficients, and p is their number. In time domain the clean 

signal is now given by ∑
=

+−=
p

k

k ngwknxanx
1

)()()( , where ��� is the input excitation, assumed to be 

white Gaussian with zero mean and unit variance. Thus, rather than try to estimate the clean signal, we 

may try to estimate the all-pole coefficients. This approach gives rise to the following linear iterative 

algorithm, based on a maximum a posteriori (MAP) estimate of the clean signal given the noisy signal 

and the all-pole coefficients: 

 

 



Step 0: initialize the signal estimate with the noisy signal �: � �. 

For i = 0,1,2,…  

Step 1: Given �E estimate the all-pole coefficients >dE�3�? using linear prediction. 

Step 2: Using >dE�3�? estimate the gain term e0. 

Step 3: Compute the short term power spectrum afgfg��� � hi
G9�∑ jg�-�klm/no/pq Gi 

Step 4: Compute the Wiener filter <E��� � a�N�N���
a�N�N����a����� 

Step 5: Estimate the spectrum of the enhanced signal 	Er9��� � <E���B��� 

Step 6: Compute the inverse Fourier transform of 	Er9��� to obtain �Er9���. 
No optimal convergence criterion has been found. Spurious spectral peaks may be generated if 

the algorithm is run for too long, and the optimal number of iterations may be different for 

different signals. However, convergence is usually quick in practice, with an average of 4-9 

iterations for a one percent tolerance. More precisely, below we see the average number of 

iterations for three different test signals, for six different input Segmental SNRs (for a discussion 

of this measure see “Validation and Testing” below). The figure shows that convergence is faster 

with increasing Segmental SNR. 

 

A closer view of the behavior of the algorithm for these signals is given in the following three 

figures (in the order: female sentence 1, female sentence 2, and male sentence 1). 



 

 

 

 



 

Validation and Testing  

Validation of both implementations was done by setting the estimate of the noise spectrum 

magnitude equal to zero, in which case the output (enhanced) signal was identical to the input 

(noisy) signal, as desired. Stability of the implementations was verified using small non-zero 

noise. 

Testing of the algorithms was performed using clean signals from TIMIT, a database of 

phonetically rich sentences spoken in 8 different dialects, widely used in the industry in the 

development of speech processing algorithms. White Gaussian noise was added using 

MATLAB’s randn function. 

Evaluation of the algorithm was mostly limited to the use of objective measures. The first 

measure, called segmental SNR, considers the energy of the clean signal as compared with the 

energy of the error in estimation, and is defined as 

s7+tkh � 10u � log9: ∑ �0���8
r8�9��8
∑ ����� � �M����08
r8�9��8

x�9


�:
 

where x(n) is the clean signal, �M��� is the enhanced signal, N is the frame length, and M is the 

number of frames. In this, as well as in the SNR measure described next, lower and upper 

thresholds are used to prevent the final measure from being distorted by atypical frames: if the 

frame value computed is negative, it is set to 0, and if it is higher than 35, it is set to 35. 



Two other measures use the “filter” H discussed above. Once again an average over all frames is 

computed, but the quantity computed in each frame depends on H. If we denote by �y the time 

domain result of applying H to � (the clean signal) and by �z the analogous quantity for the noise 

signal �, then the first measure, which we call Filter SNR, considers the energy of �y compared 

with the energy of �z and is defined as 

)N{|�P s7+ �  10u � log9: ∑ �y08
r8�9��8
 ���∑ �z08
r8�9��8
 ���
x�9


�:
 

The second measure, which we call Distortion, considers the energy of � � �y compared with the 

energy of �, and is defined as 

CNQ|RP|NR� �  10u � log9: ∑ ����� � �y����08
r8�9��8
∑ �08
r8�9��8
 ���
x�9


�:
 

 

Comparison of Results 

We now compare the performance of the two algorithms in terms of the measures described 

above. First we consider Segmental SNR of the output for six different input Segmental SNRs: 

 



The figure above shows that iterative Wiener filtering consistently performs better. When we 

consider the “filter” SNR below, we notice the same trend. However, the figure also shows that 

this comes at a price of higher distortion introduced by Wiener filtering. 

  

Conclusions 

In this project we implemented, validated and tested two standard algorithms for speech 

enhancement: spectral subtraction, and iterative Wiener filtering. Our results have shown that the 

latter performs better in terms of the objective measures described above. However, subjective 

evaluation (listening) revealed that both algorithms suffer from severe artifacts in the enhanced 

signals. It may be that more sophisticated methods for noise estimation would improve 

performance. 
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